

M50x150 Inconel 718 Material High Temperature Alloy GH 4169 Stainless Steel Fasteners Full Thread Hex Bolt

Basic Information

Place of Origin: China
Brand Name: Qingsen
Minimum Order Quantity: 1-2 ton
Price: negotiable
Packaging Details: carton box
Delivery Time: 15-20 days

• Payment Terms: Western Union, MoneyGram, T/T

Product Specification

Material: Stainless Steel, Steel

Model Number: DIN933Standard: DIN

• Grade: SS316 SS3034 A2-70 A4-80

• Size: M2-M100

• Head Type: Hexagon Flange Head

Product Name: Special Steel 310S 1.4841 Hex Bolt

Highlight: Inconel 718 Material GH 4169,
 M100 Inconel 718 Material,

SS316 Stainless Steel Fasteners

More Images

Product Description

M50*150 High temperature alloy Inconel 718 / GH 4169 stainless steel fasteners full thread hex bolt

Inconel 718 Bolting Benefits

Highly resistance to chloride and sulfide stress corrosion cracking Excellent resistance to Corrosion & Oxidation at High Temperatures Excellent resistance to H2S, CO2, chloride and sour gas environment. High Yield Strength
Resistant to aqueous corrosion

Heat resistant $\dot{\&}$ maintains high strength at elevated temperatures

Inconel 718 Bolting Applications

Chemical processing plants Boiler & pressure vessels Nuclear power plants Aerospace Natural gas processing Cryogenic Tanks

Product Name	Super Duplex stainless steel hex bolt
Size	1/4-2", M2-100
Grade	A2-50, A2-70, A2-80, A4-50, A4-70, A4-80
	stainless steel
Surface treatment	plain
Standard	DIN GB ISO JIS BA ANSI
	G&T
Thread	unc,unf,metric thread
Usage	building industry machinery
Certification	ISO9001, SGS, CTI, ROHS

→ Inconel 718(Gh4169/UNS N07718)

min max 度 De	50 55	17 21	余量 余量	2.8	4.75									
		21	余量	3.3							0.20	0.65		
度 De					5.50	0.08	0.35	0.35	0.015	0.015	0.30	0.08	1.15	0.006
密度 Density			8.24g/cm ³											
熔点 Melting point		1260-1320°C												
典型机械性能		抗拉强度 Rm N/mm²			屈服强度 RP0.2 N/mm ²			延伸率 A5%			布氏硬度 HB			
固溶	处理		965			550			30			≤363		
2.良 3.在 4.在 5.在	好的抗 高达70 高达10 低温下	拉强度 10℃时 100℃ 100℃ 具有价	長有一 具有一 対具有 B 大秀的力	强度和 定的高 设好的执 少学性的	D蠕变图 温强度 亢氧化性 影;	; ±	ξ;							
									之具有了	优死的	的机械	主能。石	Ξ	
种高	要求的	场合。										可广泛	应用于	F各
	1.在良在在在良 Incord 由种高	固溶处理 1.在退火水抗3.在高达10.3在高达10.5在低温下6.良好的时间,1.000回1718.热处理过程	固溶处理 1.在退火态时,具有2.良好的抗拉强度3.在高达700℃时4.在高达1000℃65.在低温下具有价6.良好的电弧焊接加速过程中于晶体处理过程中于晶体中高要求的场合。	图溶处理 9 1.在退火态时,具有良好的 2.良好的抗拉强度、疲劳 3.在高达700°C时具有—4.在高达1000°C时具有—5.在低温下具有优秀的力6.良好的电弧焊接性能,对 lnconel718合金为奥氏体热处理过程中于晶界处生由于在700°C时具有高温种高要求的场合。	图 Rm N/mm ² 1 在退火态时,具有良好的制造 2 良好的抗拉强度、疲劳强度和 3 在高达700°C时具有一定的第 4 在高达1000°C时具有良好的 5 在低温下具有优秀的力学性的 6 良好的电弧焊接性能,无焊后 1 hconel718合金为奥氏体结构, 热处理过程中于晶界处生成的6 由于在700°C时具有高温强度和 种高要求的场合。	图溶处理 965 1.在退火态时,具有良好的制造加工性 2.良好的抗拉强度、疲劳强度和蠕变割 3.在高达700°C时具有一定的高温强度 4.在高达1000°C时具有良好的抗氧化6.良好的电弧焊接性能。无焊后开裂敏短,6.良好的电弧焊接性能。无焊后开裂敏短,加速过程中于晶界处生成的6相使之地于在700°C时具有高温强度和优秀的种高要求的场合。	Rm N/mm² RP0.2 Rm N/mm² RP	Rm N/mm² RP0.2 N/mn B溶处理 965 550 1.在退火态时,具有良好的制造加工性 2.良好的抗粒强度、疲劳强度和蠕变断裂强度; 3.在高达700°C时具有一定的高温强度; 4.在高达1000°C时具有良好的抗氧化性 5.在低温下具有优秀的力学性能; 6.良好的电弧焊接性能,无焊后开裂敏感性 Inconel718合金为奥氏体结构,沉淀硬化后生成的Y热处理过程中于晶界处生成的6相使之具有了最佳的 由于在700°C时具有高温强度和优秀的耐腐蚀性能、种高要求的场合。	图》 Rm N/mm² RP0.2 N/mm² 图溶处理 965 550 1.在退火态时,具有良好的制造加工性 2.良好的抗拉强度、疲劳强度和蠕变断裂强度; 3.在高达700°C时具有一定的高温强度; 4.在高达1000°C时具有良好的抗氧化性 5.在低温下具有优秀的力学性能; 6.良好的电弧焊接性能,无焊后开裂敏感性 Inconel718合金为奥氏体结构,沉淀硬化后生成的Y°相使之热处理过程中于晶界处生成的6相使之具有了最佳的塑性。 由于在700°C时具有高温强度和优秀的耐腐蚀性能、易加工种高要求的场合。	Rm N/mm² RP0.2 N/mm² RP0.2 N/mm² / RP0.2 N/mm² / RP0.2 N/mm² 965 550	Rm N/mm² RP0.2 N/mm² A5% 固溶处理 965 550 30 1.在退火态时,具有良好的制造加工性 2.良好的抗拉强度、疲劳强度和蠕变断裂强度; 3.在高达700°C时具有一定的高温强度; 4.在高达1000°C时具有良好的抗氧化性 5.在低温下具有优秀的力学性能; 6.良好的电弧焊接性能,无焊后开裂敏感性 Inconel718合金为奥氏体结构,沉淀硬化后生成的Y*相使之具有了优死的热处理过程中于晶界处生成的6相使之具有了最佳的塑性。 由于在700°C时具有高温强度和优秀的耐腐蚀性能、易加工性;Inconel7种高要求的场合。	Rm N/mm² RP0.2 N/mm² A5% 固溶处理 965 550 30 1.在退火态时,具有良好的制造加工性 2.良好的抗拉强度、疲劳强度和蠕变断裂强度; 3.在高达700°C时具有一定的高温强度; 4.在高达1000°C时具有良好的抗氧化性 5.在低温下具有优秀的力学性能; 6.良好的电弧焊接性能,无焊后开裂敏感性 Inconel718合金为奥氏体结构,沉淀硬化后生成的Y*相使之具有了优死的机械热处理过程中于晶界处生成的6相使之具有了最佳的塑性。 由于在700°C时具有高温强度和优秀的耐腐蚀性能、易加工性;Inconel718合金	Rm N/mm² RP0.2 N/mm² A5% 固溶处理 965 550 30 1.在退火态时,具有良好的制造加工性 2.良好的抗拉强度、疲劳强度和蠕变断裂强度; 3.在高达700°C时具有一定的高温强度; 4.在高达1000°C时具有良好的抗氧化性 5.在低温下具有优秀的力学性能; 6.良好的电弧焊接性能,无焊后开裂敏感性 Inconel718合金为奥氏体结构,沉淀硬化后生成的Y*相使之具有了优死的机械住能。在热处理过程中于晶界处生成的6相使之具有了最佳的塑性。 由于在700°C时具有高温强度和优秀的耐腐蚀性能、易加工性;Inconel718合金可广泛种高要求的场合。	Rm N/mm² RP0.2 N/mm² A5% HB 固溶处理 965 550 30 ≤363 1.在退火态时,具有良好的制造加工性 2.良好的抗粒强度、疲劳强度和蠕变断裂强度; 3.在高达700℃时具有一定的高温强度; 4.在高达1000℃时具有良好的抗氧化性 5.在低温下具有优秀的力学性能; 6.良好的电弧焊接性能,无焊后开裂敏感性 Inconel718合金为奥氏体结构,沉淀硬化后生成的Y*相使之具有了优死的机械住能。在热处理过程中于晶界处生成的6相使之具有了最佳的塑性。 由于在700℃时具有高温强度和优秀的耐腐蚀性能、易加工性;Inconel718合金可广泛应用于种高要求的场合。

Qingsen, one of the industry 's leading supplier of Truck Body Parts, Trailer Accessories and Commercial vehicle components since 2018. Our products cover more than 800 kinds which include Door Lock System. Hinges, Fasteners, Cargo Control, Door Seal, Door Retainer, Buckle, Roller, E-track, Winch, Buffer, Folding Step, Deck Ring etc. And can completely serve for trucks, trailers, containers etc. we excel in providing our customers with the best in value by delivering the products you need. Our team strives for "extraordinary' in providing the truck body parts and trailer parts industry with the best in products and service which is unparalleled in the industry. when you need any parts related to a truck or trailer or container of anykind. Qingsen is your world-wide ONE-STOP SHOP. With more than 500 suppliers and factories nationwide, we help you get the projects donequickly and correctly.

Q1: Can I have one or two samples for checking?

A: Yes, one free samples and freight collect, trial order is aslo welcome.

Q2: What's your lead time?

A: Depending on orders, usually 10~35 days

Q3: What countries have you exported to?

A: Worldwide!

Q4: Do you have MOQ?

A: Depending on exact product, usually 500 units, no MOQ if goods in stock, most products list on Alibaba we have hundreds to thousands in stock.

Q5: Can you meet my requirements like print LOGO on the product, specific packaging, etc

A: Of course! we are a profesional factory, everything can go in you way!

Q6: Can I visit your company?

A: sure, any time at your convinience, please inform us before your visit

Q7: How is my product shipped? Will my product arrive on time?

A: By sea, by air or by express carriers (UPS, FedEx, TNT) transit time depends on freight rates.

Q8: What's terms of payment?

A: 30% T/T deposit, 70% balance before delivery.

B: 30% T/T deposit, 70% balance against BL.

C: 100% in advance, L/C at sight, Western Union/ Paypal for small amount payment.

Suzhou Industrial PARK Qingsen Trading Co., Ltd.

+8613815258017

sales@qingsensz.com.cn

Room 916, Xinghai International Building, No.28, Wansheng Street, Suzhou Industrial Park